7.12: KA: n, KB: n, PKA: n ja PKB: n välinen suhde (2023)

  1. Viimeksi päivitetty
  2. Tallenna nimellä PDF
  • Sivun henkilöllisyystodistus
    221518
  • \ NEWCOMMAND {{{{{{{{{{}}}}}}}}}}}}}}}}}}}}} \ (\ newcommand {\ vecd} [1] {\ overset} [1] {\ overset {- \! - \ RIGHTHARPOONUP} \ VPHANTOM {# 1} \ smash {# 1}}}}} {# 1}} {# 1}} { {SPAN} \) {\ MATHRMAND {null} \, {null} \,} \ null} \,} \ range} {\ math {range} \, {range} \,} \) {(\ nWCOMMAND { \ REALPAART} {}} \) \ (\ Mathrm {}}}}}}}}} \) \ (\ mathrm} \ mathrm}}} \ ( \ NEWCOMMAND {{\ | # 1 \ |} [2] {\ NEWCOMMAND {\ (\ NEWCOMMAND} [2] {\ MATHRM {SPAN} \ MATHRM {SPAN} \ MATHRM {SPAN} \ } \ NEWCOMMAND {ID {ID}}}}}}} \) {\ MATHRMAND {SPAN}}}}}}}}}}}}} \) {\ mathrm {\ MATHRM} \ MATHRM} \ mathrm {\ ull} \,} \) \ (\ mathrm {range} \ (\ Mathrm {range} \,} \) {\ mathrm {r}}}}}}}}}}}}}}}}}}}}}} \) \ (\ nWCOMMAND {\ newcommand {\ InaryPart} {\ Mathrm {IDMLLM {} \) \ (\ Mathrm}}}}}}}}}}}}}}}}}}}}} {\ mathrm}} {\ mathrm}} {\ mathrm}}} [1] \ s MAND {\ Inner} [2] {{LANGLE # 1, # 2 \ rangle}}}} \) \ (\ mathrm {span}}}}}}}}}}}}}} \ AA} \ unicode [.8,0] {x212b }} \)

    Oppimistavoitteet

    • Tietää happo- tai emäslujuuden ja \ (k_a \), \ (k_b \), \ (pk_a \) ja \ (pk_b \) välinen suhde.

    Ionisaatioreaktion tasapainon vakion suuruutta voidaan käyttää happojen ja emäksen suhteellisten vahvuuksien määrittämiseen.Esimerkiksi heikon hapon ionisaation yleinen yhtälö vedessä, jossa HA on emolapia ja A - on sen konjugaattipohja, on seuraava:

    \ [jänis _ {(aq)} +h_2o _ {(l)} \ oikeanpuoleinen fthelon h_3o +_ (me)} \ tarran {16.5.1} \]

    Tämän dissosiaation tasapainovakio on seuraava:

    \ [K = \ dfrac {h_3o ^ [a ^ [a ^ [a ^ [a ^]]} {[h)} ak 16 h)}

    Tasapainovakio tälle reaktiolle on happoionisaatiovakio \ (k_a \), jota kutsutaan myös hapon dissosiaatiovakioksi:

    \ [K_a = \ dfrac {[h_3o^+] [a^ -]} {[ha]} \ tarra {16.5.3} \]

    Siten k: n ja \ (k_a \) numeeriset arvot eroavat veden pitoisuudesta (55,3 m).Jälleen yksinkertaisuuden vuoksi \ (h_3o^+\) voidaan kirjoittaa \ (H^+\) yhtälössä \ (\ ref {16.5.3} \).Muista kuitenkin, että vapaata \ (H^+\) ei ole vesiliuoksissa ja että protoni siirretään \ (H_2O \) kaikissa happoionisaatioreaktioissa muotoon \ (H^3O^+\).Mitä suurempi \ (k_a \), sitä vahvempi happo ja sitä korkeampi \ (h^+\) pitoisuus tasapainossa.Kuten kaikki tasapainovakiot, myös happo -emäsionisaatiovakiot mitataan tosiasiallisesti \ (h^+\) tai \ (oH^ - \) aktiivisuuksien perusteella, mikä tekee niistä, mikä tekee niistäyksikkö.\ (K_a \) arvot useille yleisille hapolle on annettu taulukossa \ (\ pageindex {1} \).

    Taulukko \ (\ pageindex {1} \): \ (k_a \), \ (pk_a \), \ (k_b \) ja \ (pk_b \) arvot valituille hapoille (\ (ha \) ja niiden konjugaattipohjat (\ (a^ - \))
    Hapan \ (Ha \) \ (K_a \) \ (pk_a \) \ (A^ - \) \ (K_b \) \ (pk_b \)
    *Sulujen lukumäärä osoittaa polyproottiselle hapolle tarkoitetun ionisaatiovaiheen.
    hydroiodiinihappo \(HEI\) \ (2 \ kertaa 10^{9} \) −9,3 \ (I^ - \) \ (5,5 \ kertaa 10^{ - 24} \) 23.26
    rikkihappo (1)* \ (H_2SO_4 \) \ (1 \ kertaa 10^{2} \) −2,0 \ (HSO_4^ - \) \ (1 \ kertaa 10^{− 16} \) 16.0
    typpihappo \ (HnO3 \) \ (2,3 \ kertaa 10^{1} \) −1,37 \ (No_3^ - \) \ (4,3 \ kertaa 10^{− 16} \) 15.37
    hydroniumioni \ (Ha^+\) \ (1,0 \) 0,00 \ (H_2O \) \ (1,0 \ kertaa 10^{ - 14} \) 14.00
    Rikkihappo (2)* \ (HSO_4^ - \) \ (1,0 \ kertaa 10^{−2} \) 1.99 \ (So_4^{2 -} \) \ (9,8 \ kertaa 10^{ - 13} \) 12.01
    fluorivetyhappoa \ (Hf \) \ (6.3 \ kertaa 10^{ - 4} \) 3.20 \ (F^ - \) \ (1,6 \ kertaa 10^{− 11} \) 10.80
    typpihappo \ (Hno_2 \) \ (5,6 \ kertaa 10^{ - 4} \) 3.25 \ (NO2^ - \) \ (1,8 \ kertaa 10^{− 11} \) 10.75
    muurahaishappo \ (HCO_2H \) \ (1,78 \ kertaa 10^{ - 4} \) 3.750 \ (Hco_2− \) \ (5,6 \ kertaa 10^{− 11} \) 10.25
    bentsoehappo \ (C_6_5K_2H \) \ (6.3 \ kertaa 10^{ - 5} \) 4.20 \ (C_6H_5CO_2^ - \) \ (1,6 \ kertaa 10^{ - 10} \) 9.80
    etikkahappo \ (CH_3CO_2H \) \ (1,7 \ kertaa 10^{ - 5} \) 4.76 \ (CH_3CO_2^ - \) \ (5,8 \ kertaa 10^{ - 10} \) 9.24
    pyridinium -ioni \ (C_5H_5NH^+\) \ (5,9 \ kertaa 10^{ - 6} \) 5.23 \ (Kakhn \) \ (1,7 \ kertaa 10^{ - 9} \) 8.77
    hypokloorihappo \ (Hocl \) \ (4.0 \ kertaa 10^{ - 8} \) 7.40 \ (Ocl^ - \) \ (2,5 \ kertaa 10^{ - 7} \) 6.60
    hydrosyaanihappo \ (Hcn \) \ (6.2 \ kertaa 10^{ - 10} \) 9.21 \ (Cn^ - \) \ (1,6 \ kertaa 10^{ - 5} \) 4.79
    ammoniumioni \ (NH_4^+\) \ (5,6 \ kertaa 10^{ - 10} \) 9.25 \ (NH_3 \) \ (1,8 \ kertaa 10^{ - 5} \) 4.75
    vettä \ (H_2O \) \ (1,0 \ kertaa 10^{ - 14} \) 14.00 \ (OH^ - \) \ (1.00 \) 0,00
    asetyleeni \ (C_2H_2 \) \ (1 \ kertaa 10^{ - 26} \) 26.0 \ (HC_2^ - \) \ (1 \ kertaa 10^{12} \) −12,0
    ammoniakki \ (NH_3 \) \ (1 \ kertaa 10^{ - 35} \) 35,0 \ (NH_2^ - \) \ (1 \ kertaa 10^{21} \) −21.0

    Heikot emäkset reagoivat veden kanssa hydroksidi -ionin tuottamiseksi, kuten seuraavassa yleisessä yhtälössä esitetään, missä B on emäkanta ja BH+ on sen konjugaattihappo:

    \ [B __ (aq)}+h_2o _ {(l)} \ oikeanpuoleinen fTHarpoons bh^+_ (me)} \ tarran {16.5.4} \]

    Tasapainovakio tälle reaktiolle on emäksinen ionisaatiovakio (kb -), jota kutsutaan myös emäksen dissosiaatiovakioksi:

    \ [K_b = \ dfrac {[bh^+] [oH^ -]} {[b]} \ etiketti {16.5.5} \]

    Jälleen kerran, pitoisuus ei näy tasapainossa vakiona. Mitä suurempi \ (k_b \), sitä vahvempi emäs ja mitä korkeampi \ (OH^ - \) pitoisuus tasapainossa.\ (K_b \) arvot useille yleisille heikkoille emäksille on annettu taulukossa \ (\ pageindex {2} \).

    Taulukko \ (\ pageindex {2} \): \ (k_b \), \ (pk_b \), \ (k_a \) ja \ (pk_a \) arvot valituille heikoille emäksille (b) ja niiden konjugaattihapot (BH+)
    Pohja \ (B \) \ (K_b \) \ (pk_b \) \ (Bh^+\) \ (K_a \) \ (pk_a \)
    *Kuten taulukossa \ (\ pageindex {1} \).
    hydroksidi -ioni \ (OH^ - \) \ (1,0 \) 0,00* \ (H_2O \) \ (1,0 \ kertaa 10^{ - 14} \) 14.00
    fosfaatti -ioni \ (PO_4^{3 -} \) \ (2,1 \ kertaa 10^{ - 2} \) 1.68 \ (Hpo4^{2 -} \) \ (4,8 \ kertaa 10^{ - 13} \) 12.32
    dimetyyliamiini \ (CH_3) _2NH \) \ (5,4 \ kertaa 10^{ - 4} \) 3.27 \ (CH_3) _2N_2^+\) \ (1,9 \ kertaa 10^{ - 11} \) 10.73
    metyyliamiini \ (Shuhah \) \ (4,6 \ kertaa 10^{ - 4} \) 3.34 \ (Shana^+\) \ (2,2 \ kertaa 10^{− 11} \) 10.66
    trimetyyliamiini \ (SHA) \) \ (6.3 \ kertaa 10^{ - 5} \) 4.20 \ (Kipu) hänestä^+\) \ (1,6 \ kertaa 10^{ - 10} \) 9.80
    ammoniakki \ (NH_3 \) \ (1,8 \ kertaa 10^{ - 5} \) 4.75 \ (NH_4^+\) \ (5,6 \ kertaa 10^{ - 10} \) 9.25
    pyridiini \ (Kakhn \) \ (1,7 \ kertaa 10^{ - 9} \) 8.77 \ (C_5H_5NH^+\) \ (5,9 \ kertaa 10^{ - 6} \) 5.23
    aniliini \ (C_6H_5NH_2 \) \ (7,4 \ kertaa 10^{ - 10} \) 9.13 \ (C_6H_5NH_3^+\) \ (1,3 \ kertaa 10^{ - 5} \) 4.87
    vettä \ (H_2O \) \ (1,0 \ kertaa 10^{ - 14} \) 14.00 \ (Ha^+\) \ (1,0^*\) 0,00

    Hapon ja \ (k_b \) välillä on yksinkertainen suhde sen konjugaattipohjaan.Tarkastellaan esimerkiksi hydrosyaanihapon (\ (HCN \)) ionisaatiota vedessä happaman liuoksen tuottamiseksi ja \ (cn^ - \) reaktio veden kanssa emäksisen liuoksen tuottamiseksi:

    \ [Hcn _ {(aq)} \ oikeanpuoleinen h^+_ {(aq)}+cn^−_ {(aq)} \ tarra {16.5.6} \]

    \ [Cn^−_ {(aq)}+h_2o _ {(l)} \ oikeanleikkaus OH^−_ {(aq)}+hcn _ {(aq)} \ etiketti {16.7.7} \] \] \]

    HCN: n ionisaation tasapainovakio ekspressio on seuraava:

    \ [K_a = \ dfrac {[h^+] [cn^ -]} {[hcn]} \ etiketti {16.5.8} \]

    Vastaava ekspressio syanidin reaktiolle veden kanssa on seuraava:

    \ [K_b = \ dfrac {[oH^ -] [hcn]} {[cn^ -]} \ etiketti {16.5.9} \]

    Jos lisäämme yhtälöitä \ (\ ref {16.5.6} \) ja \ (\ ref {16.5.7} \), saamme seuraavan (muistamme, että kahden reaktion summan tasapainon vakio on yksittäisten reaktioiden tasapainovakioiden tuote):

    \ [\ Peruuta {hcn _ {(aq)}} \ oikeanleikkaus H^+_ {(aq)}+\ peruuta {cn^−_ {(aq)}} \; \; \;K_a = [h^+] \ peruuta {[cn^ -]}/\ peruuta {[hcn]} \]

    \ [\ peruuta {cn^−_ {(aq)}}+h_2o _ {(l)} \ oikeanleikkaus OH^−_ {(aq)}+\ peruutus {hcn _ {(aq)}} \; \ \ \ \;K_b = [OH^ -] \ Peruuta {[hcn]}/\ peruuta {[cn^ -]} \]

    \ [H_2o _ {(l)} \ oikeanpuoleiset H^+_ {(aq)}+OH^−_ {(aq)} \; \; \ \;K = k_a \ kertaa k_b = [h^+] [oH^ -] \]

    Tässä tapauksessa \ (k_a \) ja \ (k_b \) kuvaamien reaktioiden summa on yhtälö veden autoionisoinnille, ja kahden tasapainovakion tuote on \ (k_w \):

    \ [K_AK_B = K_W \ Label {16.5.10 \]

    Siten, jos tiedämme joko \ (k_a \) hapolle tai \ (k_b \) sen konjugaattipohjalle, voimme laskea toisen tasapainon vakion kaikille konjugaattihappo -emäsparille.

    Aivan kuten \ (ph \), \ (Poh \) ja PKW: n kanssa, voimme käyttää negatiivisia logaritmeja välttämään eksponentiaalisia merkintöjä happo- ja emäsionisaatiovakioiden kirjallisesti määrittelemällä \ (pk_a \) seuraavasti:

    \ [pka = - \ log_ {10} k_a \ tarra {16.5.11} \]

    \ [K_a = 10^{− pk_a} \ label {16.5.12} \]

    ja \ (pk_b \) as

    \ [pk_b = - \ log_ {10} k_b \ tarra {16.5.13} \]

    \ [K_b = 10^{ - pk_b} \ tarra {16.5.14} \]

    Samoin yhtälö 16.5.10, joka ilmaisee suhteen \ (k_a \) ja \ (k_b \), voidaan kirjoittaa logaritmisessa muodossa seuraavasti:

    \ [pka + pkb = pkw \ etiketti {16.5.15} \]

    25 ° C: ssa tästä tulee

    \ [pk_a + pk_b = 14.00 \ Label {16.5.16} \]

    \ (Pk_a \) ja \ (pk_b \) arvot annetaan useille yleisille hapoille ja emäksille taulukossa 16.5.1 ja taulukossa 16.5.2, ja taulukoissa E1 ja E2 on laajempi tietojoukko.Negatiivisten logaritmien käytön vuoksi \ (pk_a \) pienemmät arvot vastaavat suurempia happoionisaatiovakioita ja siten voimakkaampia happoja.Esimerkiksi typpihappo (\ (HNO_2 \)), jonka a \ (pk_a \) on 3,25, on noin 1000 kertaa vahvempi happo kuin hydrosyaanihappo (HCN), jonka \ (pk_a \) 9,21.Päinvastoin, \ (pk_b \) pienemmät arvot vastaavat suurempia emäsionisaatiovakioita ja siten voimakkaampia emäksiä.

    Joidenkin yleisten happojen ja niiden konjugaatti -emäksen suhteelliset vahvuudet esitetään graafisesti kuvassa 16.5.Konjugaattihappo -emäsparit on lueteltu kasvavan happolujuuden järjestyksessä (ylhäältä alas), mikä vastaa \ (pk_a \) vähentyviä arvoja.Tämä järjestys vastaa konjugaattipohjan vähenevää lujuutta tai \ (pk_b \) arvojen kasvavia arvoja.Kuvion 16.5.2 vasemmassa alareunassa ovat yleisiä vahvoja happoja;Oikeassa yläkulmassa ovat yleisimmät vahvat emäkset.Huomaa emähapon lujuuden ja konjugaattipohjan lujuuden välinen käänteinen suhde.Siten vahvan hapon konjugaattipohja on erittäin heikko emäs, ja erittäin heikon hapon konjugaattipohja on vahva emäs.

    Vahvan hapon konjugaattipohja on heikko emäs ja päinvastoin.

    Voimme käyttää happojen ja emästen suhteellisia vahvuuksia happo -emäsreaktion suunnan ennustamiseen noudattamalla yhtä sääntöä: happo -emästen tasapaino suosii sivua heikomman hapon ja emäksen kanssa, kuten nämä nuolet osoittavat:

    \ [\ Teksti {vahvempi happo + vahvempi emäs} \ ce {<= >>} \ teksti {heikompi happo + heikompi emäs} \]

    Happo -emäsreaktiossa protoni reagoi aina vahvemman emäksen kanssa.

    Esimerkiksi suolahappo on vahva happo, joka ionisee olennaisesti kokonaan laimennetussa vesiliuoksessa \ (h_3o^+\) ja \ \ (cl^ - \) tuottamiseksi;Vain merkityksettömät määrät \ (HCl \) -molekyylejä pysyvät toisiinsa.Siksi ionisaatiotasapaino on käytännössä aina oikealle asti, kuten yksi nuoli edustaa:

    \ [HCl _ {(aq)}+H_2O _ {(l)} \ Oikeudenkäynti \ POINTOROW H_3O^+_ {(aq)}+Cl^−_ {(aq)} \ Label {16.5.17} \]]]

    Sen sijaan etikkahappo on heikko happo ja vesi on heikko emäs.Tämän seurauksena etikkahappohapon vesiliuokset sisältävät enimmäkseen etikkahapon molekyylejä tasapainossa pienellä pitoisuudella \ (H_3O^+\) ja asetaatti -ioneja, ja ionisaatiotasapaino sijaitsee kaukana vasemmalle, kuten nämä nuolet edustavat:

    \ [\ ce {ch_3co_2h _ {(aq)} + h_2o _ {(l)} << => h_3o^ + _ _ {(aq)} + ch_3co_ {2 (aq)}^-} \]

    Samoin ammoniakin reaktiossa veden kanssa hydroksidi -ioni on vahva emäs ja ammoniakki on heikko emäs, kun taas ammoniumioni on voimakkaampi happo kuin vesi.Siksi tämä tasapaino on myös vasemmalla:

    \ [H_2o _ {(l)} + nh_ {3 (aq)} \ ce {<< =>} nh^ + _ {{4 (aq)} + OH^ -_ {(aq)} \]

    Kaikki happo -emästen tasapainot suosivat sivua heikomman hapon ja emäksen kanssa.Siten protoni on sidottu vahvempaan pohjaan.

    Esimerkki \ (\ pageindex {1} \): butyraatti- ja dimetyyliammonium -ionit

    1. Laske nitraatti -ionin (kb \) ja \ (pkb \) (\ (ch_3ch_2ch_2co_2^ - \)).Butyrchacen \ (pka \) 25 ° C: ssa on 4,83.Butyrihappo on vastuussa räätälöidyn voin hajusta.
    2. Laske \ (k_a \) ja \ (pk_a \) dimetyyliammonium -ionista (\ (CH_3) _2NH_2^+\)).Dimetyyliamiinin (\ (CH_3) _2NH \)) perusionisaatiovakio \ (kB \) on \ (5,4 \ kertaa 10^{ - 4} \) 25 ° C: ssa.

    Annettu: \ (pka \) ja \ (kb \)

    Pyysi: vastaava \ (k_b \) ja \ (pk_b \), \ (k_a \) ja \ (pk_a \)

    Strategia-

    Vakiot \ (k_a \) ja \ (k_b \) liittyvät yhtälön 16.5.10 mukaisesti.Hapon ja sen konjugaattipohjan \ (pk_a \) ja \ (pk_b \) liittyvät yhtälön 16.5.15 ja yhtälön 16.5.16 mukaisesti.Käytä suhteita pk = −log K ja k = 10 - Pk (yhtälö 16.5.11 ja yhtälö 16.5.13) muuntaaksesi välillä \ (k_a \) ja \ (pk_a \) tai \ (k_b \) ja \ (pk_b \).

    Ratkaisu-

    Meille annetaan \ (pk_a \) butyrihappolle ja pyydetään laskemaan \ (k_b \) ja \ (pk_b \) sen konjugaattipohjalle, butyraatti -ionille.Koska \ (pk_a \) -arvo on lämpötila 25 ° C, voimme käyttää yhtälöä 16.5.16: \ (pk_a \) + \ (pk_b \) = pkw = 14.00.Korvataan \ (pk_a \) ja ratkaisee \ (pk_b \),

    \ [4.83+pk_b = 14,00 \]

    \ [pk_b = 14,00–4,83 = 9,17 \]

    Koska \ (pkb = - \ log kb \), \ (kb \) on \ (10^{ - 9.17} = 6,8 \ kertaa 10^{ - 10} \).

    Tässä tapauksessa meille annetaan \ (k_b \) emäkselle (dimetyyliamiini) ja pyydetään laskemaan \ (k_a \) ja \ (pk_a \) sen konjugaattihapon, dimetyyliammoniumionien,.Koska annettu alkuperäinen määrä on \ (k_b \) eikä \ (pk_b \), voimme käyttää yhtälöä 16.5.10: \ (k_ak_b = k_w \).Korvataan \ (k_b \) ja \ (k_w \) arvot 25 ° C: ssa ja ratkaiseminen \ (k_a \),

    \ [K_a (5,4 \ kertaa 10^{ - 4}) = 1,01 \ kertaa 10^{ - 14} \]

    \ [K_a = 1,9 \ kertaa 10^{ - 11} \]

    Koska \ (pk_a \) = −log \ (k_a \), meillä on \ (pk_a = − \ log (1,9 \ kertaa 10^{− 11}) = 10,72 \).Voisimme myös muuntaa \ (k_b \) \ (pk_b \) saadaksesi saman vastauksen:

    \ [pk_b = - \ log (5,4 \ kertaa 10^{ - 4}) = 3,27 \]

    \ [pka+pk_b = 14,00 \]

    \ [pk_a = 10,73 \]

    \ [Ka = 10^{ - pka} = 10^{ - 10,73} = 1,9 \ kertaa 10^{− 11} \]

    Jos meille annetaan jokin näistä neljästä määrästä happoa tai emäkselle (\ (k_a \), \ (pk_a \), \ (k_b \) tai \ (pk_b \)), voimme laskea muut kolme.

    Harjoitus \ (\ pageindex {1} \): maitohappo

    Maitohappo (\ (CH_3CH (OH) CO_2H \)) on vastuussa hapan maidon pistävästä mausta ja hajusta;Sen uskotaan myös tuottavan kipeyttä väsyneissä lihaksissa.Sen \ (pk_a \) on 3,86 25 ° C: ssa.Laske \ (k_a \) maitohapolle ja \ (pk_b \) ja \ (k_b \) laktaatti -ionille.

    Vastaus

    \ (K_a = 1,4 \ kertaa 10^{ - 4} \) maitohapolle;

    \ (pk_b \) = 10,14 ja \ (k_b = 7,2 \ kertaa 10^{− 11} \) laktaatti -ionille

    Yhteenveto

    Kaksi lajia, jotka eroavat vain protonista, muodostavat konjugaattihappo -emäsparin.Ionisaatioreaktion tasapainon vakion suuruutta voidaan käyttää happojen ja emäksen suhteellisten vahvuuksien määrittämiseen.Heikon hapon vesiliuokselle dissosiaatiovakiona kutsutaan happoionisaatiovakioksi (KA).Samoin heikon emäksen reaktiolle veden reaktion tasapaino on emäsionisaatiovakio (KB).Kaikille konjugaattihappo -emäsparille \ (k_ak_b = k_w \).Pienemmät arvot \ (pk_a \) vastaavat suurempia happoionisaatiovakioita ja siten voimakkaampia hapoja.Päinvastoin, \ (pk_b \) pienemmät arvot vastaavat suurempia emäsionisaatiovakioita ja siten voimakkaampia emäksiä.25 ° C: ssa, \ (pk_a + pk_b = 14,00 \).Happo -emäsreaktiot etenevät aina suuntaan, joka tuottaa heikomman happo -emäsparin.

    Keskeiset takeet

    • Konjugaattihappo -emäsparien KA- ja KB -arvot liittyvät K: n kauttaw -arvo: \ [k_ak_b = k_w \]
    • Vahvan hapon konjugaattipohja on erittäin heikko emäs, ja erittäin heikon hapon konjugaattipohja on vahva emäs.

    Keskeiset yhtälöt

    • Happoionisaatiovakio: \ [k_a = \ dfrac {[h_3o^+] [a^ -]} {[ha]} \]
    • Perus- ionisaatiovakio: \ [k_b = \ dfrac {[bh^+] [oH^ -]} {[b]} \]
    • Konjugaattihappo -base -parin välinen suhde (k_a \) ja \ (k_b \): \ [k_ak_b = k_w \]
    • Määritelmä \ (pk_a \): \ [pka = − \ log_ {10} k_a \ nonter \] \ [k_a = 10^{− pk_a} \]
    • Määritelmä \ (pkb \): \ [pkb = - \ log _ {10} k_b \ nonter \] \ [k_ b = 10^{− pk_b} \]
    • Konjugaattihappo -emäsparin välinen suhde \ (pk_a \) ja \ (pk_b \) välillä:

    \ [pk_a + pk_b = pk_w \]

    \ [pk_a + pk_b = 14.00 \;\ Teksti {lämpötilassa 25 ° C} \]

    Avustajat ja määritykset

    Top Articles
    Latest Posts
    Article information

    Author: Greg Kuvalis

    Last Updated: 02/09/2023

    Views: 5615

    Rating: 4.4 / 5 (75 voted)

    Reviews: 82% of readers found this page helpful

    Author information

    Name: Greg Kuvalis

    Birthday: 1996-12-20

    Address: 53157 Trantow Inlet, Townemouth, FL 92564-0267

    Phone: +68218650356656

    Job: IT Representative

    Hobby: Knitting, Amateur radio, Skiing, Running, Mountain biking, Slacklining, Electronics

    Introduction: My name is Greg Kuvalis, I am a witty, spotless, beautiful, charming, delightful, thankful, beautiful person who loves writing and wants to share my knowledge and understanding with you.